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Introduct ion

The results reported in this paper have been obtained in

collaboration with many colleagues and students, and it is

d i f f i c u l t  for me to give adequate justice to their enthusiastic

and dedicated work. The least I may do here is to list their

contributions and have their generous help acknowledged by

name , as follows:

Acoustic Wave Scattering from Elastic Cylinders and

Spheres:

Dr. Joseph W. Dickey (NSRDC , A n n a p o l i s ) :  S u r f a c e  Wave Resonances

Dr. La r ry  F lax , Mr. Louis R. Dragonette  ( NRL , Washin gton) :  Breit-

Wigner Resonances

Dr. Jacob George (Catholic University): Resonances in trans-

mitted elastic waves

Acoustic Wave Scattering from Viscoelastic Spheres:

Dr. Guillermo C. Gaunaurd (NSWC White Oak), Dr. Larry Flax

( NRL Wa sh ing ton )

Acoustic Wave Scattering from Elastic Cy l i nd r i ca l  Shel ls:

Dr. J. Diarmuid Mu rphy (CUA) , Mr. Edward D. Breiterthach (NSRDC

Ca rderock)

E l a s t i c  Wave Scat te r ing  from Cylindrical Cavities:

Dr. Anton 3. Haug (Johns Hopkins APL), Mr. Sheldon G. Solomon

(NS RDC Carderock)

E l a s t i c  Wave Sca t t e r ing  from Spher ical  Cav i t i e s:

Dr. Guillermo C. Gaunaurd (NSWC White Oak)
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It will be shown in the following that the variety of

the mentioned scat ter ing problems is essent ia l ly  governed by

very similar phenomena, namely the resonant excitation of the

eigenvibration s of the sca t te r ing  object , be that  an elastic

body subject to an incident acoustic wave, or a f lu id - f i l l ed

cavi ty in an elast ic material exposed to compressional or

shear waves. These resonances often occur over a quite narrow

f r equency in terval  ( the width being propor t ional  to the

imaginary part of the complex eigenfrequency of the body while

it is in contact with its surroundings), and in between the

eigenfrequencies, the scatterer behaves as if it could not

vibrate (the elastic object, e.g., as if it were rigid; the

fluid—filled cavity as if it were empty). This behavior of

the scattering object provides a continuous background to the

scat ter ing ampl i tude , upon which the resonances are super—

mpoEed , and with which they interfere in an often striking

and nnexpected manner.

When the scatt~~r~ ng amp l i tude f is resolved into its

usu al no rmal modes f a la Ray leigh (also termed tt par t i al

waves ”), the set of eigenfrequencies in the nth partial wave

shifts to higher values as n is increased . The scattering

amplitude may thus be considered a function of two (continuous)

variables , L) and n , which for given n has a pole in the

complex w p la n e somewhat below the real t~~-axis , i.e.

L -
~~~~
- --~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~~~~~~~~~~
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f r — I  ~f/z
(i / 2.ir)

~
‘ w- ~~fr ~)÷~~r 

( )

the pole being located at C j=  W ( n )  - ½ i r . The width r
of the resonance is determined by the distance of the pole

below the real axis, ½fl ( >0). For a fixed frequency ~u ,

f ( W  ) may be considered a function of n, and one may expand

~ 
(
~ ) ~ £~ (

~~ ) ÷ (
~ 

- 

~~~ 
W I (%~) (

~‘~ 
o), ( 2 )

where one chooses n~~ so that (ti (n ~~ 
) = (~j, i.e. the fixed

incident frequency lies at the resonance peak when n

Then , the ampli tude

~ (w )  = _ _ _ _ _  

(F / 2 - r r )~
[w ’(’n~)]~ ~~~~~ 

- - 
~~~~~~

appears with a pole in the complex n—plane , located at

n = n + ½ ~ r above the real n—axis since

~ > 0 .  (4)

In terms of the n—variable , this is known as a Regge pole
1
,

and it shows that one and the same pole of the scattering

amplitude may appear as a resonance in the ~ i as well as in

the n variable. If n is considered a parameter and (~) the
- H

variable, the n dependence of the resonance frequency (
~J (n) 

—~~~~~~~~- --- ———---- —- - -  -~~~~~- - -----—-- -—----- -
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in Eq. (1) causes a Regge recurrence ” of the one Regge pole

under consideration in all successive partial waves at success—

ively higher resonance frequencies , as will be demonstrated in

Sections 2 and further. In the fo l lowing  section, however , we

shall discuss the Regge pole aspects of the scattering ampli-

tude , Eq. (3), as it provides a physical picture of the scat-

ter ing process in terms of surf ace waves ( “creeping ” or “cir-

cumfe ren t ial waves ”), as well a physical exp lan ation of the

mechanism of resonance excitation .

____ ______ — - - -
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I. S u r f a c e  Waves in A c ou s t i c  Scat ter ing from an

- E l a s t i c  C y l i n d e r

1) The Wa tson T ra n s f o r m a t i o n

An in f i n i t e  p lane acoustic wave exp i ( kx  — ~ I t )  of propa—

gation constant k = (J/c, inciden t along the x axis on a solid

ela st i c cyl inder  of r adius  a , produces at the position (r, ~p
of an observer loc ated out side of the cy li nder the total f ie ld

— ~ (B~ /~~~) 
(5a )

where 6 = 1 (n = 0), 2 ( n  ~ 0). The quanticy

~~ J~ (k ~~ ÷ ~~~ (Lv) (5b )

includes contribution s from the incident ( o( 3 )  and the

scattered wave (0 H ~~~~~ The 3 x 3 dete rminan ts b and D

given in the iitera tu r e2’3, contain cylinder function s W~~ h

n

arguments x ka = C~) a/c , X
L 

k
L
a = 

~ 
a/c

t 
and

k
T 

a = (&)a/c
T 

, where  C
L 

c
T 

are the velocities of

1onq ~~t u d i n a l  ( c o m p r e s s i o n a l )  and t r a n s v e r s e  ( s h e a r )  waves in

the  cy linder (of c l e n s L ty  r e s p e c t i v e ly ,  g iven by

~~~~~~~~~~~ 
( 2

~~
)/

vc  , (Sc)

which depend on the Lame’ el ast i c const an t s  1. and

Eq. (5a) is called the Ray leigh or normal mode series of

the scattering amplitude. It may be rewritten as a contour

integral by means of the Watson transformation
2 

-——-.- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-~~~~~-
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~~~~E~~f ~~(x )  = -
~

P
~~s~~~ 

e ’
~~~~~~(x) , ( 6 )

( P denot ing the princ ipa l  v alu e at ~ = 0), where the contour C

surrou nds t i ghtly on th e both sides the posi tive real axis in

the y pl ane , and hence also the poles of the integrand at the

integers y = n which are caused by the factor l/sin l~~

The amplitude , however , also has “Regge” poles located

at comp lex posi t ions v = (
~~ = 1, 2, . . .)  in the first quad-

rant of the ~‘—p lane , as indicated in Eq. (3) if we replace

n -~~ ~‘ . The contour  C may then be opened up to compri se

i n f i n i t e  po r t i ons  C~~ on which  the integral can be shown to

vanish , as well as two finite portions C and C as shown in
0

Fig. 1, with C surrounding the poles of f .  One then has for

the sca t t e red  f i e l d

(7)

wherL

P1 ~ 

~~~~ H ~~ 
~~~~ (

~~) (8)

the contribution from the term cC H~
2
~ in Eq. (5b ) having

vanished. The contribution of the “background integral” p
1
,

similar to Eq. (8) but led over the contour C’ , h as been

shown to be sma ll and w i l l  be neg lec ted .

The Regge pol es ‘i) = 1) of f~, , Eq. ( 3 ) , are determ ined 
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by the zero s of D . For the case of the alum inum cy l inder

in water , these are shown schematically at some given frequency,

in Fi~J. 2, wi th clas s i f icati on labels to be discussed later on.

Sp l i tting p
11 

in to  i n t egra l s over con tours C
1 

and C
2

(separated by a saddle point 
~
‘ (see below), and appl ying

Imai’ s transformation

J (’lr - &f’ )Q S. 
(9)

to the integral over C
2 

serves to split off , via the second

term of Eq. (9), a geometrical part Pg 
which no longer h as

l/sin7C )~ in the int egr and , and which will be evaluated at the

saddle point i) of Fig. 2, resulting in the specularly re-

flected wave
2
. (Additional saddle points in Pg 

y ield waves

which are transmitted through the cyl i nde r, see Reference 3.)

The remaining integrals are evaluated in terms of the residues

at toe poles of Fig. 2, w ith the re sidue series conv erging on

both the insonified ~nd sh adow s ides of the cy l i n d e r4.

Wc then ha vc-

= P~~÷ P~~’ (10)

with a geometric contribution

~~~~ 

~~~~~~~~~~~~~~~~~ 

(
~~~p)[ ~ 2k

:] 
~~~~~~~~~ 

( l O a )

and a re sidue con t r ibu t ion p = p
1 

+ p
2
, spl i t i n to  two series 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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[ “
~~~~! e ’~’~~/) 51,1 1( V .1’A- (lOb )

Re~~~~ 5

- 2 ~ I (os~~~~~~~) I~ (1) 
(k4

~~~ 
5:+iiT )~, D 1

I ( lOc)

where D
~ 

=

The expansion in e.g. Eq. (lob) of the quantity

C
~
)SV e c O  .~~~~~~~~~~~~~( f * 7 r ÷ 2 ~s7r )

(11)

together  wi th  the time factor exp(—i Oi t )  used by us shows

tha t  each res idue  h a s  t h e  fac t o r

~~~~~~~~~~ (12)

w h i c r i  r u v ea l s  it to b~ an attenuated circumferential wave , or

“surface wave ” , with phase velocity

~~~ (13)

Extensive numer ical  ca lcula t ions of the posi t ions of the

zeros of D~~, and of the i r  tr a j ectories ( i . e .  the i r  motion

th rough  the complex ~.‘ —p i an e  as one v a r i e s  the v a l u e  of x)

- - -~~~~~~~~~~ —~~ ~~~~~~~~~~~~~ ~~~—- -~~~ -_— -~~~~—-—
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have been made by us earl ier
5 6  

The results are shown schema-

tically in Fig. 2; examples of scale plots of the zero positions

are given elsewhere7’~ A series of “Franz (F) poles ” 
~ 

=

all with large imaginary parts (i.e., high attenuation s of the

correspondi ng surf ace waves)  l ies along a curve s t a r t i n g  at

V = x and reaching towards the upper r ight ; a single “Stoneley

(5) pole” V,~. with very small imaginary part (which tends towards

2,5
the conventionally defined Stoneley pole as ka -~~O0 ) lies

slightly to the right of V = x. The two corresponding types

of surf ace waves propagate in the f l u i d 2, with phase velocites

close to tha t of a plane sound wave in the f l u i d , while the

fol lowing su r f ace  waves propagate  in the e las t ic  cy l inder , wi th

phase velocites comparable to those of the elastic waves :

A single “R ayle igh ( R ) pole ” wi th  moderately large

im ag ina ry part (wh ich tends toward s the convent ional ly defined

Ray leigh pole or~ a f l a t  h a l f — s p a c e 2 ’5 as ka -
~~

-
~~~~~~~ 

) lies near

V = X~~, and a series of ‘Whispering Gallery (WG) poles ” 
~WG

with mall imaginary parcs trails towards the left from XT 
and

X L
. (NoLe that the poles in the second quadrant of the v -plane

do not contribute and are not enclosed in the contour C
1
, since

th ey would  give rise to surface waves that increase exponentially

with time). We have also located
6 a few “unclassified poles”

near 
~L 

and X
T? not shown in Fig. 2.

As ka increases , more poles move into the first quadrant

f rom l e f t , rendering the pole series more dense and resulting

~ 

____________ _ _ __-:~~~~~ ___ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~ ~~~
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in a larger number of propagating circi~mferentia1 wave modes.

In the limit of ka -.oo (e.g., flat half—space limit), the

density of poles also tends to infinity, with the Whispering

Gallery pole series tending towards the lateral waves obtained

from a bran ch cut in tegra l9.

2) Su r face  Wave Resona nces

We now show that the surface waves described by the scat—

ter ing amplitudes of Eqs. ( lOb , c) con tain Regge poles of the

form of Eq. (3). The €th zero of D ( C ~) ) ,

(u ~~) (w) ~ ~ ~ (14)

which is a function of the frequency, wil l  at some “resonance

frequen cy ” W = move past the integer n, so that

Re ~) (Cv ) = n . In the vicinity of the resonance fre-

quency where = 41- , and assuming J~i ~ 1, one has -

I I 
___  

_ 
(~~jyL~ 

~~
- ‘ ( 1 5 )

If we now i d e n t i f y  Re = n and = r , then

Eq. (15) and hence the scattering amplitudes p
1
, p

2 
of Eqs. (lob,

c) assum e pr ecisely the Regge pole form of Eq. (3). This shows

that as the incident frequency w passes through the nth re-

sonance frequency of the £th surface wave , the corres-

ponding surface wave goes through a reson ance. This is illus—

_ _  _ _ _ _  - - -- -- -- -- -~~~-~~~~-— —_ -_ - - _- 
~~
-- - -—- -
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Jo
trated in Fig. 3, which shows on a logari thmic scale the con-

tr ibution to ) p11 of the Rayleigh wave (1 = R) on an alumi-

num cylinder in water, for the case of back scattering ((f~ ifl ,

plotted vs. ka W a/c. The narrow resonances which occur at

the values of ka = U.) a/c , and whose wid th is determined

by Ir ~i ~
‘R , are clearly visible.

It is not hard to explain the physical origin of these

resonances with the help of Eq. (11). The latter shows that

for m = 0 , two surface waves propagate in the counterclockwise

(2  = 1) and in the clockwise (~~ = -1) direction around the

cylinder, joined by other such waves with m ‘ 0 that already

have encircled the cylinder m times previously (of course

with larger and larger attenuation since ~ 0), due to

the steady— state situation considered here. The wavelength is

given by

2~r~a -

A,j 
_

-~~ (16)
ice~~j w )

and t the reson ance f r equency W = where Re = n, one

sees that exactly n wavelengths of the surface wave fit the

circum f e rence of the t a rge t, and hence lead to a resonant rein-

forcement of the circumferential wave in the course of its re—

peated circumnavigations.

-- - -_ - -~~~~~ - - ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --- -~~~~~ _~~-— -  --~~-~~ - -~~~-_- - - _
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II. Modal Resonances and RescSnant Excitation

of EigenvibrationS._

We turn next to the resonances in the scattering amplitude

of the type of Eq. ( 1) ,  wr i t ten  as a funct ion of frequency (L) at

a fixed (real integer) mode number n. As is clear from the

introduction , these are really the same resonances as the

Regge poles of Eq. ( 3 ) ,  simply rewritten in a d i f fe rent variable.

In fact , the reson ance amplitude could be represented as a two—

dimen sion al su r face in a three—dimensional space, plotted over

the two axes W and n , and having on it a series of roughly

parallel ripples whose ridges run at an angle to either axis.

These ripples appear as a resonance in W if the surface  is

sl iced at n = const (Eq . 1), or as a reson ance in n if  the

surface is sliced at W = const (Eq. 3). These (A) —resonances

will be illustrated below for the example of acoustic—wave

sca t tering from an e las t ic cyl inder, and fu.rther on for other

examples of acoustic and elastic—wave scattering . They will

• 11
be ti~~ated mathematically by the Breit-Wigner theory developed

for thi~ resonances i i .  nuclear scattering.

1) Acoustic Scattering from an Elastic Cylinder

We shall write the scattered portion of Eq. (5a) as

I . (
~

_ )

~sc 
= 

~ III ~~~~~~~~~~~~~~~~ ( 5  - H ~ 
(
~~

) C O S f l C~ (17)

1~
- - --- -~~~-----~~~~~ --.---_- ~~~~~~~~~
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where we introduced the scattering function Sn 
exp (2i~~ ~~~)

of the nth mode, familiar from nuclear scattering theory with

the scattering phase shift; here,

• ÷ 2 1’~ /D,~. (18)

For a rigid cylinder, one has, incidentally
12:

— 

= j  — 2 L’ (k~~)/ 
~~~~~~ t )/  ( k ~~) .  (19)

Let us consider the far—field value of p by employing

the Hankel asymptotic form fo-r kr’i -ji-

~~~ 
(k~ ) (i/~ k~ ~~~~~ 

~~~~ (20 )

and introduce the far—field scattering “ fo rm function ”

~~~~~~~~~ 
=

~~~~~~~ ~~~~~~~ 

- 

. 

(21)

consisting of “partial wave” contr ibut ions

( k ~~)~~~~~ (~~~~
_ j)cos~~~~~. (22 )

In t erms of t h i s , p becomes asymptotically

~~sc 
(~~‘ 

/2r-) ~ 
‘ ‘

~~~ 1f i~p ) .  (23 )

Following Reference 3, the expression for S,~ may be repre—

sented as
— -~~~ -~~~-

:i:~~
1. ~~~-i (24~.

’)

-— - _~~~~~ - - - ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ - -- ~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~ —- ‘_ ~~~~~
--- ~~~~~~~~~~ _—~~~~~~ - -_ —~~~~~ -_ - ~~~---  —~~~~~~~~ - ——~~~-_--~~~
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where, from Eq. (19),

~j ( 2 ) /
(s) ) 

— 

~~~~~~~~~~ ( >)  
~~~~~ ( 24b)

‘1~-~ ( i)’1~4 (x )

represents the S—function for scattering from a rigid cylinder.

The corresponding phase sh i f t  is

- (,‘c) .  (25)

We further used

(~c~
• )  / ( 4~~)

~ / / J .~ . 

~~~ 
,~~~~~ i, 2

(26)

and defined the quant i ty

~~~~x) X~- D C:) (27)

a function of the normalized frequency x, with  f~
., ~~~ the

d r- - s~~ties of the cyl inder and of the ambien t fluid , respectively.

Fur ch er ,

- ~~ -_ -
~~ 

(~~~ 
a j 3

/ ) (28a)

(x~~
1— 2~~~~r )  

~~~ 2 
~~L 

~~~

‘-

~~~~~~~~~~~ 

~~L ~~ ~~ L)

2~~~[J~~
(
~L
) —

~~~~~~~~~

(28b)

~~ L~~~~T~ 
- X r J~~~~~T~~])
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~~ ~~, ~x r ) 1
= (x .~~ - 2i~~ 

) 7~ 4 2x r ~-~
‘ (‘~r)-

The quantities may be separated into real and imaginary

parts:

~~~~~~~~~~

. :

t 

± ~ s~~~. (29)

We now employ13 the linear approximation method of nuclear

resonance theory , in which we define resonance frequencies

Cr)x~ by the condition

~~~~~~ ( )ç(l)) _ ~~~~~~~~~ (30)

an eigenvalue equation with a multiplicity of solutions

(r 1,2,3 ...). We expand F~~~~-A.,  assumed to be slowly

varying with frequency , in a Taylor series in x in the

vicinity of any of these resonance frequencies:

(>~ 
— A~ 

(
~ ) ~~~~~~ (~~-x~~~~~). (31a)

We also introduce a “resonance width” by the definition

= — 2~~ / j ~~~~ (~~o). (31b)

The S—function may be rewritten in the resonance form

d (~) ~~~~~~~~~~ (32)
#Y. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~
_ __ i~

_I_ 
— ~~~~~- -~~- -~~~~~~~~~ - -— - - -~~ ~~~~~~~ —- —~~-— -~~ - - -
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Note that due to the reality of the quantities involved, one

has the “unitarity relations”

I s~J = I ~~~~~~~~~~ ) (33)

expressing the fact that no energy is lost in the scattering

process. Furthermore, 
~~~~~~ 

is seen to possess not only a reson-

ance pole at the complex frequency

— ~~~ r~ , 
- 

(31êa)

of Eq. (1), but also resonance zero at

(is ) ( )
= + 4- I (3L~b)

necessary in order to satisfy the unitarity condition.

i’hc. quantity Sn•~
l ~ th appears in the scattering ampli-

tude , Eq. (17), a d  whinh has the form

- i = 2. ~~ -~~~~ 

‘

~~ S

= 2~Q
2
~~~ [ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

35a 

—

• may be represented by the resonance expression

= e (35b)

L 
-- - 

- - -
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The partial—wave form function

- I-/ i ~~~~

f’~q) = 2i -E~~ (i~~ko. ) ~~ co~’nCp

of Eq. (22) then becomes

—

~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~ ci~~~] ~~~~~~~~~~

(3  6b)

where the second term in the brackets represents a rigid—cylinder

“potential scattering ” background contribution , upon which a

number of resonances ( ~~I ) are superimposed , and with which

they interfere.

This is illustrated in Fig. 4a where we plot [ ~~~~~~ (tt )~

from Eqs. (22) and (2~ a) vs. x ka, for a number of partial

waves n .  rn each amp l i t u d e ,  one recognizes a series of narrow

resoi~ince features superimposed on a smooth background , which

i~ m d to be gi vc~n by ‘~h~ sc at t e r i n g  amplitudes of the rigid

In fact , if we subtract the rigid—cylinder scatter-

in g an l i t u d e  f~
0
~r’~~rom f (~ C ) and plot the resulting quan-

tity ~~jir) — 
- 

as shown in Fig. 4b , then essent ia l ly

only the resonance contribution appears and the widths of the

resonances can easily be determined. -

The total form function f ( f  ) ,  which is the physical ly

measured quantity, is given by Eq. (21). In Fig. 4c, we plot

(r- vs. x = ka and observe, comparing with Fig. 4a,

that all the resonances appear here simultaneously , which

- -  —- -S-- - ~~~~~~~~~~~~ ~~~~~~~~~~~~~~ —--- ---- -- — — — -~— _ a_._ 
- -  —----—-—-- --------- - ----- -- ------ -- -
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explains the extremely irregular appeara?mce of the total form

function .

The displacement,field in the interior of the cylinder, ~~~ ,

may be represented in terms of two potentials~~ , A , in the

• form

- (37a)

If the corresponding solutions2 are subjected to the resonance

formal i sm 13
, one f ind , e.g.,

2 
_ _ _  _ _ _ _  

L~~~~ L~~)(o5~~1~f 

- 

(37b)
~~ ~i3

C r )  
x

L
~~ )I~

(i) 
x —  ~~~

showing that the interior solutio-m consists of pure resonances

without any background term . Since the resonances are narrow,

we f in d the impor tant result  that the external acoustic f i eld

penetrates the cylinder only at frequencies near  one of the

re~ ona cc frequencies , whi ieti t t Ce pene t ra t ion  into the int erior

O(~~~ ~L .  n between the resonances , in agreement with Section III.

‘ -r~~ -~i~ sing th~~ L. Th a resonance , the phase of f is ex—

pectod to jump through ~~ over a frequency interval of the

orler fl ; in fact , from Eq. (32) one finds

j T~ (38)

~~~~~~~~~~~~~~~~~~ )

—— - -  -- - - •_ __ - -- --- -- -———-  ~~--~~~- -- - 
p___ 

•~~ -~~~~ _ -- -- ---~~ --



- - ---- • - ------ - - - -~~~~ -— - — - -~~-~—~~
-- - -- - -

—21—

which confirms this conclusion . Fig . 5.shows the phase

~~~ ~~ir plott ed modulo 2i~ above ~~~~rr)1 for n = 2. Here,

the linear behavior stems from , the superimposed j umps

of 2,C from the resonances.

Returning to Figs. 4, we m ay discern f ami l i e s  of resonances

labeled £= 1,2,3... whose members appear in all the partial

waves, shifting to higher frequencies from one partial wave

to the next (hence (J ’ > O  , cf. Eq. (2)). They may be identi-

fied with the elastic surface-wave Regge poles shown in Fig. 2,

2 1 represen t ing the Ray leigh w~ ’~~ and 2 2,3.’.. the

Whispering Gallery waves. The partial-wave resonance families

are each a successive manifesta ion of one corresponding Regge

pole as it moves along its trajectory 1) = V (w) in the complex

v-p l ane  when the f r equency is being varied , appearing as a re-

sonance in as ReY 
~~~~~ 

= n .

The var ious , striking ly different shapes of the resonances

in F i g .  -~a are explained by their interference with the back—

groc 1d. A pure resonance , e.g. (n ,l ) = (2,3), appears if it

nea ri Oo.inc: ~s with ~m ~i1l of the background. If it coincides

with a maximum of the background , e.g. (1,3) , (3 ,3) or (5 ,2),

a t al cancellation and thus a narrow hole occurs ; in the

general  case, e.g. (1,2), (2,2), the  i n t e r f e r e n c e  produces a

dip on one side and a peak on the other side of the resonance.

What , physical ly, caus es the n th  mode to resonate at its

eigenfrequencies ~~~ j  ? To f i n d  out , let us study the pro—

~

—— - -~~ -
------ - - -~~ -~~~~~~~~~~-—  - -  --~~

--— 
~~
----- — - - - --
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per t ies  of the nth individual normal mode in Eq. (Sa) or

Eq. (17). Each mode is a multipole , with n = 0 the “breathing

mode ” (where the pressure contours move radially in and out) ,

n 1 the di pole (contour motion is rigidly back and forth),

n = 2 the quadrupole (contours oscillate between pro — and

oblate e l l ipses ) ,  etc., see Fig. 6a. All these motions repre-

sent  standing waves, which may be resolved in to  a pa i r  of waves

exp~~ (t~~~~ -w~~) traveling in the opposite sense, with modal phase

veloci ty c~~(w) = aw/fl(since n/a represents here the propagation

constan t ) ,  and it is clear that for the nth mode, exactly n

wavel eng ths f i t  over the c i rcum f erence of the body. This

proper ty  may be taken as the phys i ca l  c h a r a c t e r i s t i c  of a normal

mode.

The above—discussed  c i g e n f r e q u e n c i e s  ~-&) = of the

cy l inder appear as a mu l t i plicity J= 1, 2 , . . .  of e igen fr equen—

cies for  each given mode n. This mu l-t iplicity  represents the —

possi~~~1i ty  of v ar i ou s  r a d i a l  d e f o r m a t i o n s  of the pressure

coli . ~ :r - ~ in the f l u i d , l e l o n gi n g  to one and the same a z i m u t h a l

(1~~fu~~r n a t i o n  ( t h e  l a t t e r  c h a r a c t e r i z i n g  the mode u n i q u e ly ) .

For ~xample , the r ad i a l  d e f o r m a t i o n s  of the pressure  contours

for the breathing mode (n 0) may occur uniformly rad ia l ly

outward (~L = 1) or outward near the cy linder but inward

further away, with one “node ” in between ( 2  = 2), etc.
Eq. (13) now gives the phase velocity /C~~(oJ ) of the

th surface wave (or Regge pole) . Comparing with C~~ (w ’, , 

- - -—- - - - -----— -- —- -—- - - ---- - -—--  - - - __  —--—----- —S -~ --~
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we see that at the resonance frequency Cu -= (.U~~~ where Re = n,

these two phase velocities coi ncide . We may therefore sta te

tha t  a cy l inder  re sonance (n ,~e ) occurs at that frequency where

the phase velocity of the 2 th surface wave coincides with the
n th modal ph ase veloci ty, as sketched in Fig. 6b. The multi-

p l i c i t y  of resonance f r equ en cies for  one given mode is hence

expla ined na tur ally by the m u l t iplicity of the existing surface

waves.

2) Acous t i c  Sca t t e r ing  f rom an E las t i c  Sphere.

The theory of th is  case i-s exact ly analogous to that of

the cylinder , time essential difference being a replacement of

cy l i nd r i ca l  by spherical Bessel , Hankel, etc. functions. With

an incident wave

~~~~~ ~~~~ (co’~~~)

and  - - c a t t e red  \ ;ave

-

~~ 

~~ 
(~ 

• . (
~~ 

~~~~~~

)

~~~~~~~~~ ( t )

(

~~~~~~~~~~~~~~~~~~ 

(cos~~) , (40)

one o b t a i n s  an S — f u n c t i o n

-i
— c~ ~

) 
~~-‘~ 

-

(4 la )
~~~~~~~~~~~~~ _ _

~~~~L
_ i

where
~t)

(a) 
— 

-i~-i~ ( ,  ‘ 2~—

r (t~ ( x )
(4 lb)

— — -~~-~~~~~~~~~~~~ - - ~~~~~~~~~~ —- - - - —~~—-— --~~— ~~ - - ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ -- - ~ -- --
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lS g1v0n 1y H1c _ 1ng The form function of the .:1nd F' 

nlh partial wave is found as 

)J ' ~ \ J V\ I v I 

using the same resonance formalism as before. A number of 

partial waves / {, (K )/ using Eq. (4la) is plotted in Fig. 7, 

showing the corresponding resonances interfering with the rigid 

background. 

The theory of this case may here be taken over directly 

from that of the cylinder, with only the replacement of D and 
n 

b by corresponding 6 x 6 determinants for the shell which are 
n 

. . h . 15 glven 1n t e l1terature . We here plot16 in Fig. 8 several 

(4lc) 

(42a) 

(42b) 

partial-wave form functions ! f"' (n)! for an ~~r-filled aluminum 

c;hell ir1 wa tcr, for various b/a (inner to outer-radius) ratios. 

Besides a shift of the resonances as compared to Fig. 4a, we 

a 1 r:o no tc that between b/a = 0. 90 and 0. 975, the background 

changes over from that of a rigid cylinder to that of a Soft 
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cylinder surrounded by a neglig ible amount of shell material.

4) Elastic Wave Scattering from a çy~ indric al Cavity .

The elastic waves incident on a fluid—filled cavity in

an elast ic  body of dens i ty  a re again  described by a scal ar

and a vector potential ~±‘ , A as in Eq. (37a). For a corn—

press ional  wave inc ident  on a cylindrical cavity,

~~ ( L ~~ ~ (43a)

one h as th e scat tered waves

~~~~ ~~ / ~~
) ~~~~~~(k LY) Cc~~~i~~~ (43b)

= 
E ~~~~ ( L/ D - .~) ~~~~ ( k 1~~) ~~~~~~ (43c)

the l at t er corr espondi ng to mode conversion in to a scattered

sli.  :~ qa~ u .  In the i n t e r i o r  f i u i d , one has

- c~ /D~ ) ~~~~ ( k ~~~~~~~ ) ~~~~~~~ (43d)

whet~ k
F 

= (&) /cF , cF be ing  the sound ve loc i ty  in the f l u i d

(of densi ty ) .  The b o u n d a ry  c o n d i t i o n s  at the cy linder

rad i u s  r = a de te rmine  the c o e f f i c i e n t s  a , b , c and D in

the form of 3 x 3 determinants composed of cylinder function s

Introducing two elements of the 2 x 2 scattering

matrix S
n 

by 

—-1_ _____ ~~~~~~~~~~~ __ _ _ _ ____ _
__

_______ __ _ _ _ _ _ _ _ ~~__ .__S_ _~___ _ _ _ •_ _ _ _ _ _ _ _ _ _ _ __ _S___ _ _ _ _ _ _
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‘1 ~~

(44)

2~~~ / ~~
end using the asymptotic forms of H~

1
~ (kL T

r)
~ 

the asymptotic

potentials are found as

~~~ sc 
~~~~~~~~~~~~~~~~~~

(45)

~~~~ 

~
f

~~~~1f2 ~ ~~~~~~~~~~~~~~~~~~ 
~~~~~~~

with partial-wave scattering ampl i tudes

= ~~ L~ ) ~~~~ 
~~~~ 

—~~~~~ ~~~~~~~

E~~ 

(46)

A very similar analysis can- be performed for the case of an

in cident shear wave 18
, which yields corresponding matrix

Sp
T -it s  S , S , completing the 2 x 2 scattering matrix

5
yp Q~~?~

= . (47a)

Un Like the case of acoustic scattering where Eq. (33) applied,
- -p p 

—on no longer has / 5~, I - etc., but energy conservation

only requires the overall scattering matrix S to be unitary ,

= I 
, 

(47b)

due to the existence of mode conversion in the present case. 

~~~~~~~~~~ _ - -~~~~~~~~~~~ —~~~~~~~~~ ~~- - - -— -
~~~~~

-
~~~~~~~

- - -—_ -- -——-- - .~~ 
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F If we de f ine  the qu a n t i ties

~ 
±, 

~~~~~ (48a)
(1 ) JX f )

-

~~~~~~~~ 

- 

~ 4 ( t ~~ D~ - D~~D~ ) / (  D~ D~. - P~ D~~)

= * ~~ 
(48b)

where D . • are the elements of D , and further similar quanti-

ties and z
2
, as well as the empty—cavity limits ( 0

of the S matrix elements

ç-
~ 
(a)1’?

3,,, (49)

°~~ ~~ -~~ -= e 
2 ~

etc., (with ~~~ ~~~~~~~~~ complex due to Eq.  (47b ) ) ,  we obtain

2 
~~~~~~ 2 

- 

~ 
) /~ ( ~ - ~ 

), (50a)

~~~~~~~~~~~~~~~~~~~~~~~~~ 
) 2 1 ~~~’~~~~

(5 Ob)

= E ~~~~~~~~~~~~~ - / ~~ 
— 

~~n (50c)

The resonan ce theory now defines again the multiplicity
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of resonance frequencies x for the nth partial wave

(labeled s = 1, 2, 3 •. .)  as the multiple solutions of the

eigenvalue equation

~~ (
~~~L~~~~~~ 

— L~ , ( J ~~) )  
(51a)

(corresponding to the eigenfrequenCies of the fluid—filled

cavity), and expands F
fl
(x
L) —L~~

around these:

~~~ 
(
~~L~ 

— A ~~
(
~ L~ 

~ ~~~~~ (x c — XL )  
(51b)

With a de finition of the widths

— 2~~~ /)L~~ 
(52)

and of the further quantities

(53a)

= ( ) 11.~~
(s) 

, 

(53b)

the resonance expressions for the S-matrix elements

• ~- t =  e2
~~ [f ~ ~~~~~~~~~~~ 

(54a)

)( )( bt t) t ,
- ( S )

L

~~~~~~~~ ~~~~~~~~~~~ ~

_ _  _ _  -.-- ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ - S~~~- - - - -~~~~~~~~~~
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P ? S ~ Ci
are obtained . We then recognize f ‘ ( .-jt ) as consisting

of background terms corresponding to the empty-cavity scatter-

ing amp l i t u d e s, with a series of superimposed resonance ampli-

tudes which will interfere with the background.Littlepenetration

of the field into the cavity will occur for frequencies in be-

tween the resonance frequencies.

For the example of a water—filled cylindrical cavity in

an al um inum body, using Eqs. (50), we have plotted the quanti-

t ies  ~~~~~~ (ç
i~P and 

I/2

I~~~ ~)/ s 
~~~~~ 

vs. x
L 

for the

par tial waves n = 0 through 4 , as shown in Figs .  9a and 9b ,

respec tively. These figures show the empty-cavity background

with superi mposed ( i n t erf er ing )  narrow resona nces , which corres-

pond to the excitation of the eigenvibrations of the fluid

within the elastic walls (they disappear if one lets ~~~— O  ) .

The eigenfrequen4~ies of the f l u i d, i.e., the roots of D(x
L
) = 0,

are given in the l i teratu re19, and the i r  real parts agree -

exacily wi th the reson anc e position s in our f ig ures (which ,

naturally, are the same for  f PP and f  PS
)

Re f erence 19 al so li sts a d i f f erent  set of e igen frequencies

of the cav i ty  which corresponds to v ibra t ions of the wal l s ,

rather than of the interior fluid. These do not appear as

resonances in Fig. 9, hence are bel ieved to be only weakly

excited in our scattering problem. Their excitation does take

pl ace , however , as shown for  th e pu lse  problem of the spher ical

cavity by No rwood and Miiclowitz20, where exc itations of Rayleigh

—s - — — ~~~~~- — ———~~~~~~~~ p — -~~~~~~~~~~~~~~~~~
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and Franz waves in the cavity walls have been identified. This

refers to the evacuated cavity , where wall motions are the only

modes of vibration. (The corresponding wall resonances form

part of our sof t background amplitude.) Siiailar studies for

the evacuated cylindrical cavity have been performed by
• 21Miklowit z and Peck

For each partial wave n , the resonances are labeled by

s = 1, 2, 3 ... (“fun damental” s 1, and “overtones” s = 2 , 3 ...).

Fig. 9 shows that for a given type of vibratic~i s, the corres-

ponding resonance shifts to successively higher frequency values

as one progresses upwards through successive partial waves .

(The background shifts similarly but even more rapidly). As

before , the sth resonances throughout all the partial waves are

caused by a single (the sth) Regge pole in the scattering

amplitude , corresponding to the sth zero of the denominator D C X L
)

with n treated as a continuous complex variable , and with xL
a real frequency . In Fig. 9 , the trajectory c-f each Regge pole

may be followed succesively through the progression of partial

way - , - here the pc-~ e becomes physically manifest at the integer

v~1m.~es of n.

E’ ast ic n~~v’ L .atter~ ng from a Spherical Cavity

An investigatior similar to the one described above is in

progress for the case of a fluid—filled spherical cavity

(G.C. Gaunaurd and ii. Uberall , J. Acoust. Soc. Amer., to be

published); it also takes into account absorption in the external

medium. This is treated by making the propagation constants of

~~~~~~~~ .- - - --— ~ _ - ~~~~~~~~~~~~~~ - ~~~~ - -——~ ~~~~~~~~- — - - -~~~~~~-—~~~~~~~~
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the medium complox ,

kL~~ 
—‘ k~~9 (1 * 

~ ~~~~~~~~ 
) (SS a)

and writing

~~ L 
( V * 2 F ~~~) / ( 2 ?~~~~L

L )
,I (55b )

v~ / ~~~~~~~~

as suggested by the Kelvin—Voigt model of viscoelasticity in

the limit of weak absorption.

Figs. 10 show preliminary results of this investigation.

Fig. lOa presents the moduli of the n=0 and n~ 1 spherical partial

wave amplitudes 
~~~~~~~~~~ 

for a water-filled spherical cavity in

non-absorptive aluminum (first row), the soft background

amplitude moduli (second row), and the water resonance moduli

obtained by subtracting the backgroun d from each partial wave

ampli udc (third row). Fig. lOb shows the corresponding results

fo:’ t ‘ mode—converted f
PS 

~mp1itudes. Finally , Fig. lOc presents
PP . .

~~~, 
with n=0 an d 1 for an a i r—fi l l ed  spherical cavity in

rub1 ~ te f ~~t c of the f igure  re fers to non—absorptive

rubb.~r (F F
1~
0), th~ se~ ond (F:F1

107 dyn/cm2) and third row

(F~~’ l 0 dyn/cm ) to absorptive rubber. The following observations

can .e made:

(a) Apart from the well-known giant monopole Cn=0) resonance

of the (evacuated or air-filled) spherical cavity in rubber,

all i .sonances are exceedingly narrow. In fact, only the n:l

non-absorptive resonances , obtained with 10 times finer numerical

resolution than the other parts of the figure , appear accurately 

- ---— -5-~~~~~~~~~ - . ---~~~~~~-— ~~~~~~~~~ -5- - - - - -~~~~~~~~~~~
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in Fig. lOc.

(b) Absorption seems to mainly affect the background

amplitude only , which is logical since the latter refers to

the evacuated cavity , thus stems from the (absorptive) walls

exclusively. The effect of absorption consists in a filling—in

of the zeros of the background of amplitude.

5-- - -  _ _  -4
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III. Conclusion

A study has been performed of the resonances excited in

an elast ic  body by inc ident  acoustic waves , and in a fluid—

filled cavity by incident elastic waves. The resonances are

caused by Regge poles in the scattering amplitude , and they

may be studied either as a function of frequency ~ i for a given

mode number n (partial wave or modal resonances), or as a

function of mode number (in the complex n —fli plane) for a

given frequency W . In the l a t t e r  case , the resonances have

been investigated by means of the Sommerfeld—Watson transforma-

tion , and in the forme r case , by means of the Breit—Wigner re-

sonance theory of nuclear scattering. Application of this

theory to the present topics serves to indicate the basic

sim i l a r i t y  between scattering problems in various branches -of

P~~-~s ics , which may be f u r t h e r  i l l u s t r a t e d  by a recent in terpre—

1 L~~: f the r 1 ~-2loar giant multipole resonances in terms of

-
~~~~L .  poles using the methods of the Introduction .

:3 C - iq  ~-~s c ia n cc s  have  been i d e n t i f i e d  wi th  the

eicy-nvibrations of the scatterer , and ph ysical  a rguments  have

be~- -~ presented for  the causes  of the resonant  exci ta t ions of

these eigenvibrations : i.e., a resonant reinforcement in the

repeated circumnavigation s of surface waves. We also found that

in bet :een the resonance frequercies , the  s ca t t e r ing  object

appears impene trable and provides the corresponding non—resonant

background of an impene t r able body to the scattering amplitude. 

- - - _ _
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Figure Captions

Fig. 1 Contours in the complex ~ -plane used for the Watson

Transformation

Fig. 2 Schematic positions of Regge poles for an aluminum

cylinder in water, and splitting of contours. Pole

positions labeled V R 
(Rayleigh pole), 

~~ 
(Stoneley),

F 
( Franz) , 

~
‘ WG (Whispering Gallery poles) , and

saddlepoint 
~~~

Fig. 3 Pressure amplitude radiated by the Rayleigh wave on

an aluminum cylinder in water towards an observer,

located in the backward direction ( Cf 7C ) at a

distance r lOa , plotted vs. ka.

Fig. 4 (a) Partial wave backscattering amplitude moduli If~urI
for an aluminum cylinder in water, plotted vs. ka for the

first  six part ial  waves (n = 0 to 5 ) .  Positions of the

eigenfrequencies are labeled by ( 2 ) in each partial

wave

(b) Modulus of n =2 partial wave backsoattering ampli—

tude wit. r~~ i~J background subtracted, I~ 2 ( ir ) — f rl~ (7~ )I

for aluminum cylin der in water

(c) Total backscattering amplitude modulus , I f ( tr )I,
for aluminum cylinder in water. Resonances are labeled

by (n ,~~ ).
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Fig. 5 Phase -i-noc4. 2 ~Z (top) and modulus (bottom) of n:2

partial-wave scattering amplitude for an aluminum

cylinder in water

Fig. 6 (a)  Pressure contours for multipoles n=0 through 3

(b) Travelling-wave pair of nth (here sketched as 2nd)

normal mode , and surface waves L .

Fig. 7 Same as Fig. 4(a), for an aluminum sphere in water

Fig. 8 (a) Moduli of n 0  and 1 partial-wave scattering ampli-

tudes for an a i r - f i l l ed  cy lindrical aluminum shell

in water , for inner-to-outer radius ratio b/a = 0.900.

Rigid background is shown as a dashed line.

(b) Same as (a) for b/a 0.975 , with rigid (dashed)

and soft (dotted) amplitude indicated

(c) Same as (a) for b /a = 0.995. Soft  back ground is

shown as ~ dotted line

H) Modulu~ of :~t 1~ r : ir t ial  - ave (n~0,1,2) scattering

amplitude fcr air-filled cylindrical aluminum shell

in - ‘-“ with rigid back ground subtr~ cted , for

b,’a -
~~ .oQO

(e)  Same as (d )  with sof t  background subtracted, for
,

b/a = 0.995. Note the gian t n 0  (“bubble ”) reso-

nance at very low ka.

Fig. 9 (a) Modulus of normalized backscattcring amplitude

—1/2 PPa f (ic ) I vs. XL, of compressional wave
incident on water-filled cylindrical cavity in

aluminum , for partial waves n=0 through 3~ Reso—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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nances at the fundamental eigenfrequencies of

the water content of the cavity are labeled by

s = 1, and at the overtones by s 2, 3,

(b) Same as (a), for the mode—converted scattering

amplitude a ”2 jf~~~ (i9~)/sin n~& 1.
Fig. 10 ~~~~~~~ Modulus of backscattering amplitude ~~~~~ vs.

of compressional wave incident on water—filled

spherical cavity in aluminum, for partial—waves

n = 0 and 1(first row); corresponding soft back—

ground (second row), and modulus of total ampli—

tude (third row) less background.

(b ) Same as Fig. 10(a) , for If PS
1

(c) I f ~~
’I vs. X

L I for compressional wave incident on

air-filled spherical cavity in rubber , for partial

waves n = 0 and 1, with no absorption (first row),

and absorption levels F F 1
107 dyn/cm2 and ~~~ dyn/cm 2

(second and thi rd  row , respectively).
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